Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Methyl 2,3,6-tri-O-benzoyl-4-deoxy-4-methoxyamino- α-D-glucopyranoside

Olivier Renaudet, Pascal Dumy* and Christian Philouze

LEDSS, UMR CNRS 5616, Université Joseph Fourier, BP 53, 38041 Grenoble

CEDEX 9, France
Correspondence e-mail: pascal.dumy@ujf-grenoble.fr

Received 6 November 2000
Accepted 1 December 2000
The crystalline-state conformation of the title compound, $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{9}$, has been established unequivocally. The R absolute configuration is observed at the 4-methoxyamino moiety and the pyranose ring adopts essentially a perfect ${ }^{4} C_{1}$ chair. The torsion angle of the exocyclic hydroxymethyl group is shown to be gauche-gauche with respect to O 1 and C 4 , respectively. The conformation along the methoxyamino bond is consistent with that observed for calicheamicin γ_{1}^{I}.

Comment

Hydroxylamine-substituted sugars are found in an important class of antitumor antibiotics, such as calicheamicin or esperamicin, that cleave DNA specifically (Nicolaou \& Dai, 1991). Conformational studies have demonstrated a key role for this unusual $\mathrm{N}-\mathrm{O}$ linkage in maintaining the oligosaccharide core in the minor groove of DNA (Walker et al., 1994). In this context, the structures of sugars containing the hydroxylamine linkage, such as the title compound, (I), are of interest in order to assess and validate the latter theoretical studies. Reduction of methyl 2,3,6-tri- O-benzoyl-4-deoxy-4-methoxyimino- α-D-xylo-hexopyranoside with $\mathrm{NaBH}_{3} \mathrm{CN}$ at $\mathrm{pH}=3$ afforded a mixture of the corresponding gluco- and galacto-methoxyamino diastereoisomers. Recrystallization of the mixture from diethyl ether/petroleum ether allowed the

(I)
separation of each epimer. The structure of (I) (Fig. 1) displays interatomic bond distances and angles (Table 1) in good agreement with those given by Allen et al. (1987). The configuration at C 4 is R, which implies the gluco configuration. The ring adopts a quasi-perfect ${ }^{4} C_{1}$ chair conformation, as defined by the Cremer \& Pople (1975) parameters $Q=$ 0.593 (3) $\AA, \Theta=2.6(2)^{\circ}$ and $\Phi_{2}=195(4)^{\circ}$. This conformation is also adopted in solution, as outlined by the large values of
the NMR coupling constant $(\sim 10 \mathrm{~Hz})$. The exocyclic hydroxymethyl group adopts a staggered $g g$ conformation $[\omega=$ $\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 6=-70.1(2)^{\circ}$ and $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 6=$ $-52.5(2)^{\circ}$], which is the conformation usually observed in other structures containing gluco residues (Marchessault \& Pérez, 1979).

The $\alpha(\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 4-\mathrm{O} 4)$ and $\beta(\mathrm{C} 22-\mathrm{O} 4-\mathrm{N} 4-\mathrm{C} 4)$ torsion angles have values of $-51.6(2)$ and $-160.6(2)^{\circ}$, respectively, close to those of the global minimum calculated by Walker et al. (1994). However, the β value is decreased in comparison with the value of -120° calculated by Walker et al. (1994) in the monosaccharide, as well as in comparison with the value of -134° reported by Lee et al. (1987) for the crystal structure of calicheamicin γ_{1}^{I}. Moreover, NMR measurements in chloroform indicated a small value of ${ }^{3} J_{4, \mathrm{NH}}^{\prime}(2.1 \mathrm{~Hz})$ for the hydroxylamino H atom, which is consistent with an average conformation in which the hydroxylamine H atom is gauche to the C 4 H atom.

Figure 1
An ORTEPII (Johnson, 1976) molecular diagram of the title compound. Displacement ellipsoids are shown at the 40% probability level.

Two kinds of hydrogen bonds co-exist in the structure. The first is intermolecular and results from the crystal packing, forming an infinite chain of molecules running along the b axis. The second is intramolecular, linking the N4 atom to the benzoyl O3 atom. The hydrogen-bond details are given in Table 2.

Experimental

The title compound was prepared after reduction of methyl 2,3,6-tri-O-benzoyl-4-deoxy-4-methoxyimino- α-D-xylo-hexopyranoside (Tronchet et al., 1989) using sodium cyanoborohydride (Borch et al., 1971) with careful control of pH (optimum value $=3$). The corresponding gluco- and galacto-methoxyamino diastereoisomers were separated by liquid chromatography and recrystallized from diethyl ether/petroleum ether (m.p. 396 K). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
p.p.m.): $\delta 8.12-7.34(m, 15 \mathrm{H}$, aromatic H$), 6.17\left(t, 1 \mathrm{H},{ }^{3} J_{2,3}=\right.$ $\left.{ }^{3} J_{3,4}=10.0 \mathrm{~Hz}, \mathrm{H} 3\right), 5.91\left(d, 1 \mathrm{H},{ }^{3} J_{4, \mathrm{NH}}=2.1 \mathrm{~Hz}, \mathrm{H} 21\right), 5.20(d d, 1 \mathrm{H}$, $\left.{ }^{3} J_{1,2}=3.6 \mathrm{~Hz}, \mathrm{H} 2\right), 5.16(d, 1 \mathrm{H}, \mathrm{H} 1), 4.76-4.72(m, 2 \mathrm{H}, \mathrm{H} 6, \mathrm{H} 7), 4.42$ $\left(t d, 1 \mathrm{H},{ }^{3} J_{5,6}=3.6 \mathrm{~Hz},{ }^{3} J_{4.5}=10.3 \mathrm{~Hz}, \mathrm{H} 5\right), 3.51(s, 3 \mathrm{H}, \mathrm{H} 8, \mathrm{H} 9, \mathrm{H} 10)$, 3.44 ($s, 3 \mathrm{H}, \mathrm{H} 22, \mathrm{H} 23, \mathrm{H} 24$) 3.19 (bt, 1H, H4); ${ }^{13} \mathrm{C}$ NMR (p.p.m): δ $166.7(\mathrm{C}=\mathrm{O}), 166.2(\mathrm{C}=\mathrm{O}), 166.0(\mathrm{C}=\mathrm{O}), 133.4$ [aromatic $\mathrm{C}\left(\mathrm{C}_{\mathrm{ar}}\right)$], $133.3\left(\mathrm{C}_{\mathrm{ar}}\right), 130.1\left(\mathrm{C}_{\mathrm{ar}}\right), 129.9\left(\mathrm{C}_{\mathrm{ar}}\right), 129.7\left(\mathrm{C}_{\mathrm{ar}}\right), 129.3\left(\mathrm{C}_{\mathrm{ar}}\right), 128.6$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 128.5\left(\mathrm{C}_{\mathrm{ar}}\right), 97.2(\mathrm{C} 1), 73.3(\mathrm{C} 2), 67.8(\mathrm{C} 3), 67.3$ (C5), $64.3(\mathrm{C} 6)$, 62.9 (C22), 61.4 (C4), 55.6 (C7).

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{9}$
$M_{r}=535.55$
Monoclinic, $P 2_{1}$
$a=8.026(2) \AA$
$b=12.359(3) \AA$
$c=14.056(3) \AA$
$\beta=96.63(2) \AA$
$V=1384.9(5) \AA^{\circ}$
$Z=2$

$$
D_{x}=1.284 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=10.2-13.3^{\circ}$
$\mu=0.096 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Monoclinic prism, colorless
$0.35 \times 0.30 \times 0.29 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract-

 ometerω scans
4363 measured reflections

$$
\theta_{\max }=29.96^{\circ}
$$

$h=-11 \rightarrow 11$
$k=0 \rightarrow 17$
$l=0 \rightarrow 19$
4225 independent reflections
3518 reflections with $I>0.05 \sigma(I)$
$R_{\text {int }}=0.015$
2 standard reflections every 120 reflections intensity decay: 4.23%

Refinement

Refinement on $F \quad$ H-atom parameters not refined
$R=0.068$
H-atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00008\left|F_{o}\right|^{2}\right]$
$w R=0.040$
$(\Delta / \sigma)_{\max }=0.022$
$S=1.896$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

351 parameters
Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

O1-C1	$1.393(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.521(3)$
O2-C2	$1.438(2)$	$\mathrm{N} 4-\mathrm{C} 4$	$1.449(3)$
O3-C3	$1.447(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.503(3)$
O4-N4	$1.443(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.517(2)$
O5-C1	$1.411(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.528(3)$
O5-C5	$1.433(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.493(3)$
O6-C6	$1.459(3)$		
N4-O4-C22	$107.6(2)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$109.3(1)$
C1-O5-C5	$114.1(1)$	O3-C3-C4	$107.9(1)$
C6-O6-C23	$116.6(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$108.6(2)$
O4-N4-C4	$106.5(1)$	N4-C4-C3	$116.0(2)$
O1-C1-O5	$112.6(2)$	N4-C4-C5	$111.5(2)$
O1-C1-C2	$108.1(1)$	C3-C4-C5	$108.5(1)$
O5-C1-C2	$109.1(2)$	O5-C5-C4	$109.4(2)$
O2-C2-C1	$110.7(1)$	O5-C5-C6	$108.8(2)$
O2-C2-C3	$108.6(1)$	C4-C5-C6	$114.3(2)$
C1-C2-C3	$109.9(2)$	O6-C6-C5	$107.4(2)$

Table 2
Hydrogen-bonding geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H21 \cdots O7 $^{\mathrm{i}}$	0.91	2.26	$3.085(2)$	151
N4-H21 3 O3	0.91	2.53	$2.895(2)$	105

Symmetry code: (i) $-x, \frac{1}{2}+y, 1-z$.

H atoms were located from a difference map but were not refined $(\mathrm{N}-\mathrm{H}=0.91 \AA$ and $\mathrm{C}-\mathrm{H}=0.94-1.06 \AA)$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992-1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

The authors acknowledge support of this work from the CNRS (ACI). This work was also supported by grant No. 98-423548 from MENRT (to OR).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1434). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Borch, R. F., Bernstein, M. D. \& Dupont Durst, H. (1971). J. Am. Chem. Soc. 93, 2897-2904.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratotry, Tennessee, USA.
Lee, M. D., Dunne, T. S., Chang, C. C., Ellestad, G. A., Siegel, M. M., Morton, G. O., McGahren, W. J. \& Borders, D. B. (1987). J. Am. Chem. Soc. 109, 3466-3468.
Marchessault, R. H. \& Pérez, S. (1979). Biopolymers, 18, 2369-2374.
Molecular Structure Corporation (1992-1997). TEXSAN. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nicolaou, K. C. \& Dai, W.-M. (1991). Angew. Chem. Int. Ed. Engl. 30, 13871416.

Tronchet, J. M. J., Bizzozero, N. \& Geoffroy, M. (1989). Carbohydr. Res. 191, 138-143.
Walker, S., Gange, D., Gupta, V. \& Kahne, D. (1994). J. Am. Chem. Soc. 116, 3197-3206.

